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Moving particle �nite element method with global smoothness

Su Hao, Wing Kam Liu∗;† and Ted Belytschko
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SUMMARY

We describe a new version of the moving particle �nite element method (MPFEM) that provides solu-
tions within a C0 �nite element framework. The �nite elements determine the weighting for the moving
partition of unity. A concept of ‘General Shape Function’ is proposed which extends regular �nite
element shape functions to a larger domain. These are combined with Shepard functions to obtain a
smooth approximation. The Moving Particle Finite Element Method combines desirable features of �nite
element and meshfree methods. The proposed approach, in fact, can be interpreted as a ‘moving parti-
tion of unity �nite element method’ or ‘moving kernel �nite element method’. This method possesses
the robustness and e�ciency of the C0 �nite element method while providing at least C1 continuity.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The �nite element method (FEM) is the most popular and successful computational method
[1–4] in engineering analysis. The conventional �nite element method approximates the solu-
tion with a piecewise continuous function so that discontinuities of the gradient occur on the
element boundaries. These discontinuities reduce the accuracy of the gradient of the approx-
imated solution. Thus, the �nite element method may require a very �ne mesh in problems
with high gradients, or with distinct localized features, which can be computationally expen-
sive. Also under large deformations, mesh distortion may either abort the calculation or result
in a dramatic deterioration of accuracy. These issues hamper the application of FEM for some
engineering problems.
Meshless, or meshfree, methods such as the Element Free Galerkin method (EFG) [5, 6],

reproducing kernel particle method (RKPM) [7], h-p clouds [8, 9], and the stress-point method
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[10], are a new class of smooth particle methods (SPH) [11] that have been developed in
the last decade. A distinguishing feature of these new meshfree methods, as compared to
SPH, is their ability to satisfy the reproducing conditions [12–14], see the reviews [6, 15, 16].
Meshless approximations can also be constructed by the moving least-square approximation
in a �nite element [17, 18]. All of these methods demonstrate robustness in handling large
deformation problems with good accuracy when the domain of in�uence covers enough nodes.
However, meshfree methods also demonstrate several disadvantages. For example, most mesh-
free approximations are not interpolants, which necessitates special treatment to handle es-
sential boundary conditions; e.g. see References [15, 19]. Furthermore, nodal-based meshfree
algorithms may have spurious modes [20], whereas a background mesh is needed for Gauss
quadrature; in any case, the Galerkin weak form is di�cult to integrate accurately, especially
near a boundary [21]. Focusing on these challenges for both meshfree methods and FEM,
in the past decade continuous endeavors have been made in developing innovative ideas and
approaches; e.g. References [9, 20–33].
In this paper we propose a method that combines �nite element approximations with mesh-

free kernel weights. The method has the following properties:

1. it provides continuity of both the approximated solution and its gradient
2. it is an interpolant, i.e. it satis�es so-called Kronecker-delta property, so no special
treatment for essential boundary conditions is needed

3. only a compact domain of in�uence is required
4. it can be integrated easily in Galerkin formulations and
5. it is robust for large deformation simulations.

This paper is organized as follows: Section 2 introduces the main concept and the structure
of the interpolation function. Numerical examples are presented in Section 3. Discussions of
extensions are given in Section 4. Section 5 contains a summary and conclusions.
The following notation is used throughout. Boldface symbols denote a tensor, the order of

which is indicated by the context. Plain symbols denote scalars or a component of a tensor
when a subscript is attached; repeated lower case indices indicate summations.

2. PROPOSED APPROACH

2.1. General shape function

Consider a domain � with boundary @� and let the � be subdivided into ne elements so that
�=

⋃ne
e=1 �

e. Each element has NEN nodes, but the method is also applicable to meshes with
elements that have di�erent numbers of nodes.
We �rst introduce the concept of general shape function: the general shape function N̂ eJ (x)

is the �nite element shape function NeJ (x) extended over the entire domain.
The above de�nition can be made more precise as follows.
Let Se be the set of all nodes of element e and PeJ (x) be a set of polynomial interpolants

associated with the element e, so that

PeJ (x
e
I )= �IJ ∀I; J ∈ Se (1)
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Figure 1. The general shape functions associated with node J for a one-dimensional linear �nite element.

where xeI are the nodes of element e. The general shape functions for element e are then

N̂ eJ (x)=P
e
J (x) ∀x∈� (2)

We call element e the ‘parent element’ of the general shape function N̂ eJ (x).
To distinguish the above from standard �nite element shape functions NeJ (x), note that

standard �nite element shape functions are de�ned by

NeJ (x)=

{
PeJ (x) ∀x∈�e

0 otherwise
(3)

Figure 1 shows the one-dimensional linear general shape functions of node J for the stan-
dard 2-node element. The nodes are arranged in order of node number, but this is not neces-
sary. As can be seen, the general shape functions of node J of elements e1 and e2 within their
parent elements are identical to the standard shape functions, but they are extended beyond
the elements.
Thus, while the general shape functions of element e are

N̂ e1(x)=
x − xe1
xe2 − xe1

∀x; N̂ e2(x)=
xe2 − x
xe2 − xe1

∀x

the standard shape functions are de�ned as

Ne1 (x)=



x − xe1
xe2 − xe1

for xe16x6x
e
2;

0 otherwise:

N e2 (x)=



xe2 − x
xe2 − xe1

for xe16x6x
e
2

0 otherwise

The terminology ‘general shape function’ is borrowed from spectrum analysis in material
science [34] and psychobiology [35]. We introduce this concept because, as will be seen, it
enables the construction of a smooth interpolation similar to �nite elements.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1007–1020
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2.2. MPFEM approximation

Consider a kernel �(x) de�ned on a compact support �x:

�(x)=

{
�(x) ∀x∈�x
0 otherwise

(4)

We impose the restriction that the compact support can span at most the domain generated
by the union of all elements that contain any node in Se, i.e. when x∈�e, then

�x ⊂
⋃
f∈N

�f (5)

where N is the set of all elements that contain any node in Se. This kernel �(x) is normalized
so that ∫

��x
�(x̃ − x) dx̃=1 where ��x=�x ∩� (6)

It can be seen that the above corresponds to continuous forms of the Shepard function and
meets the reproducing condition for a constant (a partition of unity). No other reproducing
condition need be met by the kernel.
Let Ex be the set of all elements e such that

�ex=�
e ∩ ��x �=0 (6a)

The MPFEM approximation is then given by

uh(x)=
ne∑
e=1

∫
�ex

�(x̃ − x) dx̃∑
I∈Se
N̂ eI (x)uI ∀x∈� (7)

where uI is the nodal parameter of u at node I . Equation (7) can be written also as

uh(x)=
∑
e∈Ex

∫
�ex

�(x̃ − x) dx̃∑
I∈Se

N̂ eI (x)uI ∀x∈� (8)

The second form (8) is the one used in computations since the sum is over smaller number
of elements. Note that the kernel �(x) is only integrated over the intersection of the element
domain with the support of �(x).
For the one-dimensional case, (8) becomes

uh(x)=
∑
e∈Ex

∫
�ex

�(x̃ − x) dx̃∑
I∈Se

N̂ eI (x)uI ∀x∈� (9)

We note that (8) can also be written as

uh(x)=
∑
e∈Ex

!e(x)
∑
I∈Se

N̂
e
I (x)uI ∀x∈� (10)

where

!e(x)=
∫
�ex

�(x̃ − x) dx̃ (11)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1007–1020
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Figure 2. The weights !ei in (9)–(12) are determined by the integrals over the intersection of the
element domains and the support �x of the kernel �(x̃ − x) that is centred at x= x̃.

From the de�nition of !e(x) given in (11) and the normality condition (6), it follows that

ne∑
e=1
!e(x)=

∑
e∈Ex

!e(x)=1 ∀x∈� (12)

We also require that

!e(xJ )=0 if J =∈ Se (13)

This corresponds to the previously stated requirement that the support of �(x) be small enough
so that for any point x∈�e; �(x − xJ )=0 if node J =∈ Se.
The kernel function is shown at a typical point in Figure 2. It can be seen that in one dimen-

sion, as many as three values of !e(x) can be non-zero at a point (in this case, !e1 (x); !e2 (x),
and !e3 (x)). The functions !e(x) serve as weights on the general shape functions. This is
illustrated in Figure 3, which shows the approximation over a segment consisting of three
elements. In this �gure, we have used the de�nition

ûe(x)=
∑
I∈Se

N̂ eI (x)uI

It can be seen that the approximation is smooth and is an interpolant (i.e. it satis�es the
Kronecker-delta condition), which will be demonstrated later.

2.3. Kronecker-delta property

We show here that the approximant (8) is an interpolant. If we evaluate (10) at a node P,
i.e. at x=xP, we obtain:

uh(xP)=
∑
e∈Ex

!e(xP)
∑
I∈Se

N̂ eI (xP)uI (14)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1007–1020
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Figure 3. An approximation by MPFEM, it is a weighted sum of the general interpolants ûei .

From requirement (13) it follows that the right hand side of (14) vanishes for any node
P =∈ Se. For any other node P of element e, i.e. for any P ∈ Se, from (1) and (2) we have

N̂ eI (xJ )= �IJ (15)

So (14) becomes

uh(xP)=
∑
e∈Ex

!e(xP)
∑
I∈Se

�IPuI (16)

From (12) and (16) we obtain

uh(xP)= uP

which demonstrates that (8) is an interpolant.

2.4. Boundary conditions

When we evaluate (8) or (10) at a boundary node P, i.e. at x=xP; xP ∈ @�, condition (13)
requires that the support of �(x) not intersect elements that are not connected to node P.
Therefore the general shape function extrapolation and its bene�t cannot be exploited for
natural boundary conditions. Since MPFEM is an interpolant, it will satisfy essential boundary
conditions with the same accuracy as �nite elements.

2.5. Consistency and reproducing conditions

In this subsection we prove that the de�nition of the weights !e(x) given in (6) and
(11)–(13) ensure that the approximation (8) satis�es the reproducing condition [6, 7].
We assume that the general shape functions satisfy the linear reproducing condition in the

entire domain, so∑
I∈Se

N̂ eI (x)=1;
∑
I∈Se

N̂
e
I (x)xiI = xi; i=1; 2; 3 ∀x∈� (17)
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where xiI are the nodal values of co-ordinates xi at node I . Let the nodal values of u(x) be
obtained from a linear function of x:

u(x)= a0 + ajxj (18)

The nodal values of u(x) are then given by

uI = a0 + ajxjI (19)

Substituting (19) into (10) yields

uh(x)=
∑
e∈Ex

!e(x)
∑
I∈Se

N̂ eI (x)(a0 + ajxjI) (20)

From (17) it follows that the above becomes

uh(x)=
∑
e∈Ex

!e(x)(a0 + ajxj) (20a)

Then using (11), it follows that

uh(x)= a0 + ajxj (20b)

which demonstrates that the reproducing conditions are met. The linear reproducing conditions
are necessary for �rst order consistency.

2.6. Continuity

When the general shape functions are polynomial interpolants, then the general shape functions
and their derivatives of any order are continuous. The continuity of the approximation (8)
then depends strictly on the continuity of the kernel �(x). For a C0 kernel, the approximation
is C1, i.e. continuously di�erentiable.
The gradient of the approximation (8) is

@iuh(x)=
∑
e∈Ex

∑
I∈Se

�N̂ eI (x)@i!e(x) +!e(x)@iN̂ eI (x)�uI (21)

where @i= @
@xi
.

The derivatives of standard C0 �nite element shape functions have discontinuities at element
interfaces. The general shape function eliminates this discontinuity by extending the de�nition
of the shape function to the entire domain. If �(x) is a piecewise continuously di�erentiable
function, i.e. a global C0 function de�ned by (4), then because of the continuity of the general
shape function (see (2)) the RHS of (21) is also a C0 function.

2.7. An assumed strain formulation with arbitrary order of continuity

When the kernel �(x) is C0, according to (11) the secondary derivative of (8) is C−1. As
an alternative to (21), we propose an ‘assumed strain’ [36] approximation of the n-th order
derivatives

@n11 @
n2
2 @

n3
3 u

h(x)=
∑
e∈Ex

!e(x)
∑
I∈Se

(@n11 @
n2
2 @

n3
3 N̂

e
I (x))uI for n=0; 1; : : : ; (22)

where @ni = @
n=@xni ; n1; n2; n3 are non-negative integers and n= n1 + n2 + n3.
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‘Assumed strain’ approximations are commonly used in multi-�eld methods, such as the
Hu-Washizu method or Petrov-Galerkin method as in the assumed strain scheme proposed for
EFG in References [37, 38].
It can be shown that when the n-th derivative of the general shape function reproduces any

k-th order polynomial, (22) also correctly reproduces the derivative of a k-th order polynomial.
For example, from (17), we see that the linear general shape functions satisfy:∑

I∈Se
@iN̂ eI (x)=0;

∑
I∈Se

@iN̂ eI (x)xjI = �ij (23)

By substituting (23) into (22) and then applying (12), we can verify that the �rst derivatives
of a linear function are reproduced correctly:∑

e∈Ex
!e(x)

∑
I∈Se

@iN̂ eI (x)=0 (24a)

and ∑
e∈Ex

!e(x)
∑
I∈Se

@iN̂ eI (x)xjI = �ij (24b)

For the assumed strain approach, any square integrable C−1 function can be used as the
kernel �(t) if it satis�es the normality condition (6). Note that meeting the reproducing
conditions does not su�ce to insure satisfaction of the patch test [38].

3. ONE-DIMENSIONAL NUMERICAL EXAMPLE

3.1. MPFEM shape function

An alternative expression for (8) is

uh(x)=
∑
J∈SU

NMPFJ (x)uJ ; SU ⊆
ne⋃
e=1

Se (25)

where SU is the set of nodes that belong to the elements intersected with ��X , the MPFEM
shape function NMPFJ is de�ned by

NMPFJ (x)=
∑
e∈Ex

!e(x)
∑
I∈Se

�IJ N̂ eI (x) (26)

For the one-dimensional example shown in Figure 3, the interpolation at x involves a total 4
nodes, i.e., nodes i − 1; i; i + 1, and i + 2. The corresponding MPFEM shape functions are:

NMPFi−1 (x) = !e1N̂
e1
i−1(x)

NMPFi (x) = !e1N̂
e1
i (x) +!e2N̂

e2
i (x)

NMPFi+1 (x) = !e2N̂
e2
i+1(x) +!e3N̂

e3
i+1(x)

NMPFi+2 (x) = !e3N̂
e3
i+2(x)

(27)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1007–1020
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Figure 4. One-dimensional MPFEM shape functions.

For the example shown in Figure 2, let the nodes be uniformly distributed and let the kernel
be

�(t)=



Acos(t) |t|6d

2

0 |t|¿d
2

(28)

The corresponding MPFEM shape functions are plotted in Figure 4. Note that they are quite
similar to those in meshfree methods [5, 7] and the natural element method [24].

3.2. A numerical example

Consider the following one-dimensional boundary value problem:

@2u
@x2

+ g(x)=0 ∀x∈ [0; 1]; u; xn= �t on �t and u= �u on �u (29)

Assume that g(x), the ‘body force’, has the form

g(x)=6x +

(
2
�2

−
(
2x − 2x0
�2

)2)
exp

(
−
(
x − x0
�

)2)
(30)

and

u(0)= exp
(
− x

2
0

�2

)
(31)

u; x(1)=−3− 2
(
1− x0
�2

)
exp

(
−
(
1− x0
�

)2)
(32)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1007–1020
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Figure 5. Comparison of displacement solution (a) and its derivative (b) for
MPFEM, FEM, with the exact solution (29).

where � is chosen to be small (e.g. �=0:01) and x0 ∈ [0; 1]. This example has been studied
in Reference [21]. The solution to (29) is

u(x)=−x3 + exp
(
−
(
x − x0
�

)2)
(33)

Numerical studies with the proposed method are reported next. The domain [0; 1] has been
partitioned into equal sub-domains separated by particles with spacings from 0.1 (11 parti-
cles) to 0.002 (501 particles). Guass quadrature with 1 to 6 points per element are used,
but the improvement after 3 quadrature points is small. The L2 and H1 norms are de�ned
in [3] by:

‖u− uh‖L2 =
[∫ 1

0
(u− uh)2 dx

]1=2
(34)

and

‖u− uh‖H1 =
[∫ 1

0
(u; x − uh; x)2 dx

]1=2
(35)

In the above, u denotes the exact solution and uh is the numerical solution. Plotted in Figure 5
are the solution u and its derivative computed by the linear �nite element, MPFEM with
linear general shape functions, and the exact solution for the case of �=0:02; x0 = 0:5. It
demonstrates that the MPFEM smoothes out the discontinuities between elements. Figures 6(a)
and (b) are the convergence rates of the L2 and H1 norms, computed from the �nite element
simulation, the MPFEM de�ned by (8) for u and (22) for du=dx. The �rst diagram shows that
the L2 norms for the two approaches yield the same convergence rate of two. However, the
absolute error of the MPFEM scheme is lower than that of the �nite element solution. This
improvement is much more marked in the H1 norm. The MPFEM approach demonstrates a
remarkably good convergence rate between 1.5 and 2 in the H1 norm.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1007–1020
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(a) (b)

Figure 6. Convergence of MPFEM for the problem de�ned by (32).

4. DISCUSSION

4.1. Violation of Kronecker-delta property
The Kronecker-delta property does not hold when the compact support of the kernel is too
large, i.e. when it intersects any element that is not connected to node P. This occurs because
for a general shape function from a parent element that is not connected to node P, Equa-
tion (15) does not hold if (13) is not met. This drawback can be avoided in the assumed
strain approach by de�ning a general function to vanish outside its parent element but with
derivatives that are extended to the entire domain.

4.2. Multi-dimensional case
We remark here on some additional considerations for multi-dimensional approximations. In
two dimensions, the kernel �(r− x) is a function with a compact support �x that is centered
at x with boundary @�x; e.g. a circle centred at x as shown in Figure 7. The union of
elements e for which �e ∩�x �=0 forms the domain of in�uence for the point x. This domain
is illustrated by the polygon indicated by bold solid lines in Figure 7(a).
In order to ensure the continuity of the approximation (8) and its �rst and second order

partial derivatives, �(r−x) is required to be a globally C0 or C1 function, respectively. When
� is de�ned locally on a compact support �x, it follows that uh(x) is C2 if �∈C1 on �x and

�(x) = 0 and @i�(x)ni = 0 ∀x∈ @�x or x =∈�x (36)

For the assumed strain approach, the approximation (22) is continuous for any order of
derivatives if �(r− x) is a square integrable C−1 function in �x.
Plotted in Figure 8 is a two-dimensional example of NMPFI (x) and its derivatives for the

assumed strain approach. The gradients were constructed by (22) with the general bi-linear
shape function and Haar’s kernel on a rectangular compact domain:

�(x) =



1
a2

for|x|6a
2
and |y|6a

2
0 otherwise

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1007–1020
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(a) (b)

Figure 7. (a) The compact support �x that is centered at x; and (b) de�nition of �ex: the
intersection of �x and element e.

(a) (b)

(c)

Figure 8. Two-dimensional MPFEM shape function and its derivatives: (a) NMPFEMI (x; y);
(b) NMPFEMI; x (x; y); and (c) NMPFEMI; y (x; y).

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 59:1007–1020
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4.3. A nodal integration scheme

The integral in (11), which de�nes the weight !e(x̃), may be tedious to evaluate in multi-
dimensional cases. Here we introduce a nodal integration scheme that is very convenient. By
rewriting (22) at node P:

@ni u
h(xP)=

∑
e∈Ex

!e(xP)
∑
I∈Se

@ni N̂
e
I (xP)uI for n=0; 1; 2; : : : ; (37)

Instead of (11), we de�ne the weight by

!e(xP)=
(
1
Ae

)/( ∑
a∈Ex

1
Aa

)
(38)

where Aa is the area (2D) or the volume (3D) of element a.

5. SUMMARY AND CONCLUSIONS

(1) A moving particle �nite element method has been developed. The fundamental idea of
this method is to use a kernel approximation in conjunction with general �nite element
shape functions. As the general shape functions already satisfy certain reproducing con-
ditions, the kernel only needs to be a partition unity. Hence, the proposed method can
also be named ‘Moving partition-unity �nite element method’ (MPFEM) or ‘Moving
kernel �nite element method’ (MKFEM).

(2) The concept of a ‘general shape function’ has been proposed, which is the standard
�nite element shape function but extended to the entire domain.

(3) The proposed MPFEM is an interpolant, i.e. it possesses the Kronecker-delta property.
(4) The proposed MPFEM is Cn if the kernel is globally Cn−1.
(5) An assumed strain MPFEM approximation has been proposed for which any order of

derivatives is continuous if the kernel is a square integrable function.
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